
CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3

DTS-HD®

 PBR API Library
Description

DTS, Inc.
5220 Las Virgenes Road
Agoura Hills, CA 91302

USA

www.dts.com

Document Number: 9302J19200
Revision: E
Version: 1.2

Effective Date: December 2011

http://www.dts.com/�

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page ii of 33 DTS Document No.: 9302J19200E

Confidential

This document contains confidential proprietary information owned by DTS, Inc. and/or its affiliates
("DTS"), including but not limited to trade secrets, know-how, technical and business information. Not
for disclosure except under terms of a fully-executed written confidential disclosure agreement by and
between the recipient hereof and DTS. Unauthorized disclosure is a violation of State, Federal, and
International laws.

NOT FOR USE EXCEPT UNDER TERMS OF A FULLY-EXECUTED WRITTEN LICENSE
AGREEMENT BY AND BETWEEN THE RECIPIENT HEREOF AND DTS.

THE TECHNOLOGY AND/OR WORKS ASSOCIATED WITH THIS DOCUMENT ARE (1)
CONFIDENTIAL, PROPRIETARY TRADE SECRETS; AND/OR (2) PROTECTED BY (A)
APPLICABLE COPYRIGHT LAW AND/OR (B) EUROPEAN PATENT NUMBERS:_ 0864146,
1741093 AND 1743326, AND U.S. PATENT NUMBERS_5,956,674, 5,974,380, 5,978,762,_6,487,535,
6,226,616, 7,212,872, 7,003,467, 7,272,567, 7,668,723, 7,392,195, 7,930,184, 7,333,929, 7,548,853
AND OTHER U.S. AND INTERNATIONAL PATENTS BOTH PENDING AND ISSUED.

No Warranty

THE FOLLOWING TERMS SHALL APPLY TO ANY USE OF ANY HARDWARE, SOFTWARE
AND METHODS ASSOCIATED WITH THIS DOCUMENT (THE “PRODUCT”) AND, AS
APPLICABLE, ANY RELATED DOCUMENTATION: (I) ANY USE OF THE PRODUCT AND ANY
RELATED DOCUMENTATION IS AT THE RECIPIENT’S SOLE RISK; (II) THE PRODUCT AND
ANY RELATED DOCUMENTATION ARE PROVIDED “AS IS” AND WITHOUT WARRANTY OF
ANY KIND AND DTS EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE, REGARDLESS OF WHETHER DTS KNOWS OR HAS
REASON TO KNOW OF THE USER’S PARTICULAR NEEDS; (III) DTS DOES NOT WARRANT
THAT THE PRODUCT OR ANY RELATED DOCUMENTATION WILL MEET USER’S
REQUIREMENTS, OR THAT DEFECTS IN THE PRODUCT OR ANY RELATED
DOCUMENTATION WILL BE CORRECTED; (IV) DTS DOES NOT WARRANT THAT THE
OPERATION OF ANY HARDWARE OR SOFTWARE ASSOCIATED WITH THIS DOCUMENT
WILL BE UNINTERRUPTED OR ERROR-FREE; AND (V) UNDER NO CIRCUMSTANCES,
INCLUDING BUT NOT LIMITED TO NEGLIGENCE, SHALL DTS OR THE DIRECTORS,
OFFICERS, EMPLOYEES, OR AGENTS OF DTS, BE LIABLE TO USER FOR ANY INCIDENTAL,
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, AND LOSS OF
BUSINESS INFORMATION) ARISING OUT OF THE USE, MISUSE, OR INABILITY TO USE THE
PRODUCT OR ANY RELATED DOCUMENTATION.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page iii of 33 DTS Document No.: 9302J19200E

Copyright

DTS-HD®

PBR API Library Description

Do Not Duplicate. © 2012 DTS, Inc. All Rights Reserved. Unauthorized duplication is a violation of
State, Federal, and International laws.

This publication and the Product are copyrighted and all rights are reserved by DTS, Inc. Without the
express prior written permission of DTS no part of this publication may be reproduced, photocopied,
stored on a retrieval system, translated, or transmitted in any form or by any means, electronic or
otherwise.

Due to ongoing improvements and revisions, DTS cannot guarantee the accuracy of printed material after
date of publication nor can it accept responsibility for any errors or omissions. DTS may publish updates
and revisions to this publication, however DTS has no obligation to notify you of any such update or
revision and nothing herein shall be construed as creating any obligation for DTS to do so, and DTS has
no obligation to update or revise this publication and nothing herein shall be construed as creating any
such obligation.

Conformity with any standards contained herein shall not constitute DTS certification. No product is
certified until it has passed DTS testing and DTS has issued a certification statement. Please note,
products containing unreleased, beta or outdated software versions may not be certified by DTS.

The content of this publication supersedes the content of any materials previously provided by DTS
pertaining to the subject matter of this publication.

DTS, the Symbol, DTS and the Symbol together and DTS-HD are registered trademarks of DTS, Inc.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page iv of 33 DTS Document No.: 9302J19200E

Table of Contents

1 INTRODUCTION ·· 1
1.1 Overview ·· 1

2 INITIALIZATION ·· 2
2.1 Library Instantiation ··· 2
2.2 Library Initialization ··· 2
2.3 Loading of bit stream ··· 2

2.3.1 Loading of bit-stream using PBR database data ···3

3 RETRIEVAL OF FRAME SCHEDULE/PAYLOAD AND FRAME DATA ······ 4
3.1 Initializing library start state ·· 5
3.2 Frame retrieval for separate core and extension sub-streams. ··· 5

3.2.1 Example code for retrieving only schedule/payload data for each frame of the encoded
bit-stream (separate core and extension sub-stream method). ··5
3.2.2 Example code for retrieving both the encoded data and schedule/payload data for each
frame of the encoded bit-stream (separate core and extension sub-stream method). ························6

3.3 Frame retrieval for single sub-stream (combined core and extension) ······································ 7
3.3.1 Example code for retrieving only schedule/payload data for each frame of the encoded
bit-stream (combined sub-stream method) ··7
3.3.2 Example code for retrieving both the encoded data and schedule/payload data for each
frame of the encoded bit-stream (combined sub-stream method). ··8

3.4 Navigation or designating section of bit-stream to extract ·· 8
3.4.1 Designating bit-stream section for retrieving frame data into separate core and extension
sub-streams. ···9
3.4.2 Designating bit-stream section for retrieving frame data into single (combined core and
extension) sub-streams. ···12

3.5 Generation of PBR database image ··· 14
3.6 Deallocate Library ·· 15

4 APPENDIX ··· 16
4.1 API Headers ·· 16
4.2 API Functions ·· 16

4.2.1 DTSPBR_Allocate_Hdl ···16
4.2.2 DTSPBR_Deallocate_Hdl ··16
4.2.3 DTSPBR_Init ···16
4.2.4 DTSPBR_Load_EncFile ··17
4.2.5 DTSPBR_Load_EncFile using PBR Database image ··17
4.2.6 DTSPBR_Get_Load_Progress ···18
4.2.7 DTSPBR_Init_FrameNavigation ···18

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page v of 33 DTS Document No.: 9302J19200E

4.2.8 DTSPBR_Set_Schedule_Region ···18
4.2.9 DTSPBR_Get_Frame_Schedule_SingleSubStream ··18
4.2.10 DTSPBR_Get_Frame_Data_SingleSubStream ···19
4.2.11 DTSPBR_Get_AccessUnit_Schedule_SingleSubStream ··19
4.2.12 DTSPBR_Get_AccessUnit_Data_SingleSubStream ···20
4.2.13 DTSPBR_Get_Frame_Schedule_TwoSubStream ···20
4.2.14 DTSPBR_Get_Frame_Data_TwoSubStream ··21
4.2.15 DTSPBR_Get_Stream_Duration ···21
4.2.16 DTSPBR_Get_NumCodecDelayFrame ···22
4.2.17 DTSPBR_Get_Schedule_BitRate ··22
4.2.18 DTSPBR_Get_PBR_DBase_Size ··22
4.2.19 DTSPBR_Get_PBR_DBase_Data ···23
4.2.20 DTSPBR_Get_PBR_DBase_Loaded_Flag ··23
4.2.21 DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor ·····································23
4.2.22 DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor ··24
4.2.23 DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData ··24

4.3 CDTSDecRawFrameBuffer ·· 24
4.4 CDTSMpeg2DTS_audio_stream_descriptor ··· 26
4.5 CDTSMpeg2DTSHD_audio_stream_descriptor ··· 27
4.6 CDTSSampleEntry ··· 28

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 1 of 33 DTS Document No.: 9302J19200E

1 INTRODUCTION

1.1 Overview
This document describes the DTS PBR (Peak Bit-rate) and Bit-stream Parser API which provides a set of
"C++" Application Programming Interface functions to the DTS PBR and Parser Library so that it can be
linked in and called by a host application. The primary objective of this library is to provide disc
authoring applications with the ability to perform PBR smoothing on non-PBR smoothed DTS-HD
Master Audio™ encoded files and frame parsing. This functionality is achieved by providing API
functions for traversing the entire encoded file and extracting each frame of the bit-stream. The frame
bit-stream returned from the frame retrieval is PBR smoothed for DTS-HD Master Audio bit-streams
only. For all other bit-stream types, the actual encoded raw frame from the bit-stream is returned. For
applications requesting just a section of the bit-stream, there exists API functions to define the region of
extraction (and therefore, the region of PBR smoothing). To extend the functionality of this library, the
API frame extraction functions will also allow extraction of CBR encoded bit-stream frames.

This API provides the following functionality:

• Functions to extract out individual encoded frames from DTS-HD (.dtshd) files or legacy DTS
CD/DVD (.cpt) files.

• Functions to extract the frame payload/schedule (payload and PTS) from DTS-HD (.dtshd) files
or legacy DTS CD/DVD (.cpt) files.

• Simultaneous PBR smoothing and frame parsing of non-PBR smoothed DTS-HD Master Audio
encoded (VBR encoded) .dtshd files

• Frame parsing of previously PBR scheduled DTS-HD master audio encoded files.
• Ability to designate region (start frame/end frame) for frame extraction (and PBR scheduling).
• Ability to navigation to specific frame location to commence bit-stream extraction
• Functions to extract Mp2TS and Mp4 DTS audio descriptors for each frame.

Library operations consists of the following steps

• Library initialization which consists of handle allocation, library initialization, and bit-stream
loading

• Selection of retrieval region to the entire bit-stream (default) or designated section
• Initializing library for retrieval of first frame schedule/payload and/or data along with

Mp2TS/Mp4 audio descriptor
• Tranversing entire retrieval region for frame schedule/payload and/or data along with

Mp2TS/Mp4 audio descriptor

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 2 of 33 DTS Document No.: 9302J19200E

2 Initialization
The library initialization consists of the following steps:

• Instantiation

• Initialization

• Loading DTS encoded bit-stream

2.1 Library Instantiation
The DTS PBR smoothing and parser library instantiation encompasses allocating an instance of the
library via DTSPBR_Allocate_Hdl which returns an instance to the library handle CDTSPBRHdl.

CDTSPBRHdl pDtsHDPBRHdl;
pDtsHDPBRHdl = DTSPBR_Allocate_Hdl(void);
if (pDtsHDPBRHdl == NULL)

Throw “Cannot create handle”;

2.2 Library Initialization
Once the library has been instantiated, the next step is initialization of the library via the DTSPBR_Init
API function. During this step, the name of the DTS encoded file (either DTS-HD with .dtshd file
extension or legacy CD/DVD with .cpt file extension) and any initialization flags are passed to the
library. Initialization will fail if the DTS encoded file can not be opened or the DTS-HD file header can
not be read. For normal operation of the library, the initialization flag is set to 0.
 unsigned int nPBRInitFlags = 0;

if (! DTSPBR_Init(pDtsHDPBRHdl, pcInFile, nPBRInitFlags))
{
 DTSPBR_Deallocate_Hdl(pDtsHDPBRHdl);

 return false;
 }

2.3 Loading of bit stream
After library initialization, the next step is to load the DTS encoded file. For CBR streams, the library
load process will involve loading a single frame to determine meta-data information encoded in the bit-
stream. For a non-PBR smoothed VBR bit-stream (DTS coherent acoustics core with lossless extension),
the entire DTS-HD Master Audio bit-stream must be loaded by the library and parsed to facilitate PBR
analysis and smoothing. This processing time for the load process is dependent upon the size of the
DTS-HD file and the I/O speed of the hard drive. The bit stream loading is accomplished by calling the
DTSPBR_Load_EncFile API function.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 3 of 33 DTS Document No.: 9302J19200E

 if (! DTSPBR_Load_EncFile(pDtsHDPBRHdl))
 {
 DTSPBR_Deallocate_Hdl(pDtsHDPBRHdl);
 return false;
 }

For multi-threaded GUI applications where load progress is being reported, one thread can be assigned to
performing the call DTSPBR_Load_EncFile function while another thread calls the
DTSPBR_Get_Load_Progress() API function to check on the file loading percentage complete.

2.3.1 Loading of bit-stream using PBR database data
As mentioned previously, the library is required to load the entire bit-stream for non-PBR smoothed
DTS-HD Master Audio bit-streams (coherent acoustics core with lossless extension). Once an
application shuts down the library, the PBR data is no longer in memory. Any new subsequent
application sessions with the same non-PBR smoothed master audio bit-stream will require a complete
traversal of the entire master audio bit-stream upon session initialization. Although loading and
traversing the bit-stream load process is not a computational exhaustive step, it is limited by the I/O
speed of the disc. To eliminate this start-up load time required for future sessions using the same non-
PBR smoothed master audio bit-stream, an image of the PBR database may be generated by the library
and used for future application sessions. In this scenario, the calling application loads the entire master
audio encoded file during the inaugural session using this particular DTS encoded bit-stream. Then prior
to exiting the inaugural session, the applications queries the library for the PBR database image and
stores it for initializing future sessions with the same master audio bit-stream. It is the responsibility of
the calling application to manage and store the PBR database image. In subsequent sessions, the calling
application will load the bit-stream using the PBR database image and the entire master audio bit-stream
will NOT have to be loaded and parsed. This is accomplished by calling the DTSPBR_Load_EncFile
API function and passing in the PBR database image.

 if (! DTSPBR_Load_EncFile(pDtsHDPBRHdl, pucPBRDBaseBuffer, nPBRDBaseSize))
 {
 DTSPBR_Deallocate_Hdl(pDtsHDPBRHdl);
 return false;
 }

If the library detects an error with the PBR database image, it will automatically discard using the PBR
database image and continue with the load process by defaulting back to parsing and traversing the entire
master audio bit-stream to initialize the PBR database. The API function
DTSPBR_Get_PBR_DBase_Loaded_Flag can be used to determine if the loading of the PBR database
image was successful or if the library defaulted back to loading and parsing the bit-stream.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 4 of 33 DTS Document No.: 9302J19200E

3 Retrieval of frame schedule/payload and frame data
Once the encoded DTS file has been loaded, an application can either retrieve frame schedule/payload
data and/or actual encoded frame bit-steam data. The library provides API functions to retrieve the frame
data as either a single sub-stream (combined core + extension) or as two separate sub-streams (core and
extension). By default, the library assumes, the calling application will retrieve data for the entire bit-
stream. When the library operates upon a non-PBR smoothed master audio file, the schedule and frame
data returned from the library is PBR smoothed.

For applications retrieving only frame by frame schedule/payload information, the library provides API
(DTSPBR_Get_Frame_Schedule_*) functions for retrieving the frame data as either as a single sub-
stream (combines core and extension) or two separate sub-streams (separate core and extension sub-
streams). Both API functions (single and seperate sub-stream) will return the PTS and DTS of the frame.
API function DTSPBR_Get_Frame_Schedule_TwoSubStream models separate core and extension sub-
streams and returns separate frame payload values for the core and extension sub-stream. For bit-streams
containing only a core sub-stream, the function will return 0 bytes for the extension sub-stream payload.
Similarly the function will return 0 bytes for the core sub-stream payload for bit-streams containing only
an extension sub-stream. For applications modeling the DTS bit-stream as a single sub-stream, function
DTSPBR_Get_Frame_Schedule_SingleSubStream is provided. It models a single sub-stream and returns
a single value for the total number of bytes in the frame (combines core sub-stream frame payload with
extension sub-stream frame payload).

For applications retrieving frame by frame encoded data (and schedule/payload) information, the API
functions DTSPBR_Get_Frame_Data_TwoSubStream() and
DTSPBR_Get_Frame_Data_SingleSubStream() are provided. In addition to the frame bit-stream data,
both functions will return the PTS and DTS of the frame. DTSPBR_Get_Frame_Data_TwoSubStream
separates the frame data into core and extension sub-stream data buffers. For DTS bit-streams containing
only a core sub-stream, the function will return 0 bytes for the extension sub-stream payload. Similarly
the function will return 0 bytes for the core sub-stream payload for bit-streams containing only an
extension sub-stream. API function DTSPBR_Get_Frame_Data_SingleSubStream returns the frame data
in a single sub-stream data buffer (core and extension sub-streams are modeled as a single sub-stream).

By default, the library assumes the calling application will retrieve data for all frames of the DTS
encoded bit-stream. This includes the codec delay frames. Therefore any application not
requiring the codec delay frames should extract them and discard them. For DTS bit-streams
contained in a “.dtshd” file, the codec delay can be determined from meta-data in the .dtshd file
header. See .dtshd file header (DTS-HD_File_Header.doc) documentation to determine number of
codec delay frames at the beginning of the bitstream. For legacy DVD DTS bit-streams (files
ending with “.cpt” file extensions), the codec delay is one frame.

To extract out all frames, the calling application continues to call the DTSPBR_Get_Frame_* API
functions until the function returns false. This indicates that the library frame pointer has traversed to the
end of the encoded bit-stream. (If there is an error in the bit-stream such that a DTS Sync word is NOT
at the next frame location, the DTSPBR_Get_Frame_* API functions will also return false.)

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 5 of 33 DTS Document No.: 9302J19200E

Upon retrieving the frame payload/schedule data, API functions are provided to retrieve Mp2TS and
Mp4 audio descriptors. The API functions
DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor and
DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor are provided for retrieving DTS audio
frame Mp2TS audio descriptors for both DTS and DTS-HD. Similarily, API function
DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData returns the frame Mp4 audio descriptor.

3.1 Initializing library start state
Prior to the retrieval of any frame data, the library frame pointer must be initialized to start pulling data
from the start of bit-stream (default operation) or the first frame of the selected region (if a bit-stream
region has been selected via DTSPBR_Set_Schedule_Region) by calling the
DTSPBR_Init_FrameNavigation API function. As previously discussed, the DTSPBR_Get_Frame_*
API functions will return false when the either the library’s frame pointer tranverses past the end of the
encoded bit-stream or past the end of the selected region. To re-start tranversal using
DTSPBR_Get_Frame_* API functions, a call to DTSPBR_Init_FrameNavigation must be made.

3.2 Frame retrieval for separate core and extension sub-streams.
3.2.1 Example code for retrieving only schedule/payload data for each frame of the encoded bit-

stream (separate core and extension sub-stream method).

 fprintf(pFile,”PTS”);
 fprintf(pFile,”\tDTS”);
 fprintf(pFile,”\tCoreSubStreamBytes”);
 fprintf(pFile,”\tExtSubStreamBytes\n”);
 // Set library state to start from beginning of bit-stream
 if (! DTSPBR_Init_FrameNavigation(pDtsHDPBRHdl))
 return false;

while (DTSPBR_Get_Frame_Schedule_TwoSubStream(pDtsHDPBRHdl, nuPTS,
nuDTS, nuCoreBytes, nuExtBytes))

 {
#ifdef _WIN32
 if (nuPTS == 0)
 fprintf(pFile, “0\t0\t%d\t%d\n”, nuCoreBytes, nuExtBytes);
 else
 fprintf(pFile, “%.I64u\t0\t%d\t%d\n”, nuPTS, nuCoreBytes,
nuExtBytes);
#else
 fprintf(pFile, “%llu\t%llu\t%d\t%d\n”,nuPTS, nuDTS, nuCoreBytes,
nuExtBytes);
#endif
 }
NOTE: Example extracts all frames from file including any codec delay frames.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 6 of 33 DTS Document No.: 9302J19200E

3.2.2 Example code for retrieving both the encoded data and schedule/payload data for each
frame of the encoded bit-stream (separate core and extension sub-stream method).

// Set library state to start from beginning of bit-stream

 if (! DTSPBR_Init_FrameNavigation(pDtsHDPBRHdl))
 return false;
 n = 0;

while (DTSPBR_Get_Frame_Data_TwoSubStream(pDtsHDPBRHdl, &coreData,
nuCoreBytes, &extData, nuExtBytes, nuPTS, nuDTS))

 {
 if (nuCoreBytes > 0)
 {
 if (fwrite(coreData.m_pucEncodedRawFrame,
sizeof(char),nuCoreBytes,pFile) != nuCoreBytes)
 {
 fprintf(stderr, “Error writing %s.\n”, sFileName);
 fclose(pFile);
 return false;
 }
 }
 if (nuExtBytes > 0)
 {
 if (fwrite(extData.m_pucEncodedRawFrame,
sizeof(char),nuExtBytes,pFile) != nuExtBytes)
 {
 fprintf(stderr, “Error writing %s.\n”, sFileName);
 fclose(pFile);
 return false;
 }
 }
#ifdef ENABLE_MPEG_DESCRIPTOR

// retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp2TS && pFileMP2 != NULL)
 {
 CDTSMpeg2DTSHD_audio_stream_descriptor DTSHDdescriptor;
 CDTSMpeg2DTS_audio_stream_descriptor DTSdescriptor;

 if
(DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor(pDtsHDPBRHdl,
&DTSHDdescriptor))
 {
 fprintf(pFileMP2, "Frame #%d\n", n);
 Dump_Mpeg2_DTSHD_audio_stream_descriptor(pFileMP2,
&DTSHDdescriptor);
 }
 if
(DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor(pDtsHDPBRHdl, &DTSdescriptor))
 {
 fprintf(pFileMP2, "Frame #%d\n", n);

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 7 of 33 DTS Document No.: 9302J19200E

 Dump_Mpeg2_DTS_audio_stream_descriptor(pFileMP2,
&DTSdescriptor);
 }
 }
 // retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp && pFileMP4 != NULL)
 {
 CDTSSampleEntry DTSSampleEntry;
 if
(DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData(pDtsHDPBRHdl, &DTSSampleEntry))
 {
 fprintf(pFileMP4, "Frame #%d\n", n);
 Dump_Mpeg4_DTSSampleEntry(pFileMP4,
&DTSSampleEntry);
 }
 }
#endif // #ifdef ENABLE_MPEG _DESCRIPTOR
 n++;
 fprintf(stderr, “Updating frame #:%d\r”, n);
 }

NOTE: Example extracts all frames from file including any codec delay frames.

3.3 Frame retrieval for single sub-stream (combined core and extension)

3.3.1 Example code for retrieving only schedule/payload data for each frame of the encoded bit-
stream (combined sub-stream method)

 fprintf(pFile,”PTS”);
 fprintf(pFile,”\tDTS”);
 fprintf(pFile,”\tFrmBytes\n”);
 // Set library state to start from beginning of bit-stream
 if (! DTSPBR_Init_FrameNavigation(pDtsHDPBRHdl))
 return false;

while (DTSPBR_Get_Frame_Schedule_SingleSubStream(pDtsHDPBRHdl, nuPTS,
nuDTS, nuFrmBytes))

 {
#ifdef _WIN32
 if (nuPTS == 0)
 fprintf(pFile, “0\t0\t%d\n”, nuFrmBytes);
 else
 fprintf(pFile, “%.I64u\t0\t%d\n”, nuPTS, nuFrmBytes);
#else
 fprintf(pFile, “%llu\t%llu\t%d\n”,nuPTS, nuDTS, nuFrmBytes);
#endif
 }

NOTE: Example extracts all frames from file including any codec delay frames

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 8 of 33 DTS Document No.: 9302J19200E

3.3.2 Example code for retrieving both the encoded data and schedule/payload data for each

frame of the encoded bit-stream (combined sub-stream method).

// Set library state to start from beginning of bit-stream
 if (! DTSPBR_Init_FrameNavigation(pDtsHDPBRHdl))
 return false;
 n = 0;

while (DTSPBR_Get_Frame_Data_SingleSubStream(pDtsHDPBRHdl, & nuFrmDatas,
nuFrmBytes, nuPTS, nuDTS))

 {
 if (fwrite(nuFrmData.m_pucEncodedRawFrame, sizeof(char),
nuFrmBytes,pFile) != nuFrmBytes)
 {
 fprintf(stderr, “Error writing %s.\n”, sFileName);
 fclose(pFile);
 return false;
 }

 n++;
 fprintf(stderr, “Updating frame #:%d\r”, n);
 }

NOTE: Example extracts all frames from file including any codec delay frames

3.4 Navigation or designating section of bit-stream to extract
The library provides the ability to select a section of the bit-stream to schedule and extract. This
provides the application with the ability to “trim” out sections of the bit-stream. For non-PBR smoothed
master audio bit-streams, only the selected section will be scheduled. Since the library supports seamless
switching, the first two frames and last two frames will not be PBR smoothed. Designation of a section
of the bit-stream for smoothing and extraction is done using the DTSPBR_Set_Schedule_Region()
function by designating the start and end frame of the selected region. When this function is not used to
set a region, the library will operate upon the entire bit-stream. The library will not allow navigation to a
designated frame or selection of a frame region when operating upon any DTS-HD Master Audio
encoded bit-streams which has already been PBR smoothed prior to being loaded into the library. The
library will only allow navigation and selection of bit-stream regions for CBR bit-streams and non-PBR
smoothed master audio bit-streams.

NOTE: The library uses frame number “one” as the first frame. For bit-streams with codec delays,
frame number one is a codec delay frame. The selected region may include codec delay frames.
Codec delay frames will NOT be PBR smoothed but are exactable from the library. Therefore any
application which does not require the codec delay frames should discard them if they are included
in the selection region. (Or alternatively designate a selection region with out the codec delay
frames and they will be “trimmed” out.) Also when converting timecode to frame number, the
application should be aware of the codec delay frames included in the file. Setting the start and end
frame to -1 or 0 will select the entire bit-stream (including codec delay frames).

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 9 of 33 DTS Document No.: 9302J19200E

3.4.1 Designating bit-stream section for retrieving frame data into separate core and extension
sub-streams.

3.4.1.1 Example code for retrieving only schedule/payload data for designated region of
the encoded bit-stream (separate core and extension sub-stream method).
// Sets bit-stream region using start and end frame index

 if (! DTSPBR_Set_Schedule_Region(pDtsHDPBRHdl, nFrameStart, nFrameEnd))
 return false;

 fprintf(pFile,”PTS”);
 fprintf(pFile,”\tDTS”);
 fprintf(pFile,”\tCoreSubStreamBytes”);
 fprintf(pFile,”\tExtSubStreamBytes\n”);
 // Set library state to start from beginning of selected region
 if (! DTSPBR_Init_FrameNavigation(pPBRHdl))
 return false;

while (DTSPBR_Get_Frame_Schedule_TwoSubStream(pDtsHDPBRHdl, nuPTS,
nuDTS, nuCoreBytes, nuExtBytes))

 {
#ifdef _WIN32
 if (nuPTS == 0)
 fprintf(pFile, “0\t0\t%d\t%d\n”, nuCoreBytes, nuExtBytes);
 else
 fprintf(pFile, “%.I64u\t0\t%d\t%d\n”, nuPTS, nuCoreBytes,
nuExtBytes);
#else
 fprintf(pFile, “%llu\t%llu\t%d\t%d\n”,nuPTS, nuDTS, nuCoreBytes,
nuExtBytes);
#endif

#ifdef ENABLE_MPEG_DESCRIPTOR

// retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp2TS && pFileMP2 != NULL)
 {
 CDTSMpeg2DTSHD_audio_stream_descriptor DTSHDdescriptor;
 CDTSMpeg2DTS_audio_stream_descriptor DTSdescriptor;

 if
(DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor(pDtsHDPBRHdl,
&DTSHDdescriptor))
 {
 fprintf(pFileMP2, "Frame #%d\n", n);
 Dump_Mpeg2_DTSHD_audio_stream_descriptor(pFileMP2,
&DTSHDdescriptor);
 }
 if
(DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor(pDtsHDPBRHdl, &DTSdescriptor))
 {

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 10 of 33 DTS Document No.: 9302J19200E

 fprintf(pFileMP2, "Frame #%d\n", n);
 Dump_Mpeg2_DTS_audio_stream_descriptor(pFileMP2,
&DTSdescriptor);
 }
 }
 // retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp && pFileMP4 != NULL)
 {
 CDTSSampleEntry DTSSampleEntry;
 if
(DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData(pDtsHDPBRHdl, &DTSSampleEntry))
 {
 fprintf(pFileMP4, "Frame #%d\n", n);
 Dump_Mpeg4_DTSSampleEntry(pFileMP4,
&DTSSampleEntry);
 }
 }
#endif // #ifdef ENABLE_MPEG _DESCRIPTOR
 }
NOTE: The designation of nFrameStart and nFrameEnd in DTSPBR_Set_Schedule_Region should
account for any codec delay frame(s) in the bit-stream.

3.4.1.2 Example code for retrieving both the encoded data and schedule/payload data for
designated region of the encoded bit-stream (separate core and extension sub-
stream method).

// Sets bit-stream region using start and end frame index
if (! DTSPBR_Set_Schedule_Region(pDtsHDPBRHdl, nFrameStart, nFrameEnd))

 return false;

 // Set library state to start from beginning of selected region
 if (! DTSPBR_Init_FrameNavigation(pDtsHDPBRHdl))
 return false;
 n = 0;

while (DTSPBR_Get_Frame_Data_TwoSubStream(pDtsHDPBRHdl, &coreData,
nuCoreBytes, &extData, nuExtBytes, nuPTS, nuDTS))

 {
 if (nuCoreBytes > 0)
 {
 if (fwrite(coreData.m_pucEncodedRawFrame,
sizeof(char),nuCoreBytes,pFile) != nuCoreBytes)
 {
 fprintf(stderr, “Error writing %s.\n”, sFileName);
 fclose(pFile);

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 11 of 33 DTS Document No.: 9302J19200E

 return false;
 }
 }
 if (nuExtBytes > 0)
 {
 if (fwrite(extData.m_pucEncodedRawFrame,
sizeof(char),nuExtBytes,pFile) != nuExtBytes)
 {
 fprintf(stderr, “Error writing %s.\n”, sFileName);
 fclose(pFile);
 return false;
 }
 }
#ifdef ENABLE_MPEG_DESCRIPTOR

// retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp2TS && pFileMP2 != NULL)
 {
 CDTSMpeg2DTSHD_audio_stream_descriptor DTSHDdescriptor;
 CDTSMpeg2DTS_audio_stream_descriptor DTSdescriptor;

 if
(DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor(pPBRHdl, &DTSHDdescriptor))
 {
 fprintf(pFileMP2, "Frame #%d\n", n);
 Dump_Mpeg2_DTSHD_audio_stream_descriptor(pFileMP2,
&DTSHDdescriptor);
 }
 if
(DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor(pPBRHdl, &DTSdescriptor))
 {
 fprintf(pFileMP2, "Frame #%d\n", n);
 Dump_Mpeg2_DTS_audio_stream_descriptor(pFileMP2,
&DTSdescriptor);
 }
 }
 // retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp && pFileMP4 != NULL)
 {

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 12 of 33 DTS Document No.: 9302J19200E

 CDTSSampleEntry DTSSampleEntry;
 if (DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData(pPBRHdl,
&DTSSampleEntry))
 {
 fprintf(pFileMP4, "Frame #%d\n", n);
 Dump_Mpeg4_DTSSampleEntry(pFileMP4,
&DTSSampleEntry);
 }
 }
#endif // #ifdef ENABLE_MPEG _DESCRIPTOR
 n++;
 fprintf(stderr, “Updating frame #:%d\r”, n);
 }
NOTE: The designation of nFrameStart and nFrameEnd in DTSPBR_Set_Schedule_Region
should account for any codec delay frame(s) in the bit-stream.

3.4.2 Designating bit-stream section for retrieving frame data into single (combined core and

extension) sub-streams.
3.4.2.1 Example code for retrieving only schedule/payload data for designated bit-stream

region (combined sub-stream method).
// Sets bit-stream region using start and end frame index
if (! DTSPBR_Set_Schedule_Region(pDtsHDPBRHdl, nFrameStart, nFrameEnd))

 return false;

 fprintf(pFile,”PTS”);
 fprintf(pFile,”\tDTS”);
 fprintf(pFile,”\tFrmBytes\n”);
 // Set library state to start from beginning of selected region
 if (! DTSPBR_Init_FrameNavigation(pDtsHDPBRHdl))
 return false;

while (DTSPBR_Get_Frame_Schedule_SingleSubStream(pDtsHDPBRHdl, nuPTS,
nuDTS, nuFrmBytes))

 {
#ifdef _WIN32
 if (nuPTS == 0)
 fprintf(pFile, “0\t0\t%d\n”, nuFrmBytes);
 else
 fprintf(pFile, “%.I64u\t0\t%d\n”, nuPTS, nuFrmBytes);
#else
 fprintf(pFile, “%llu\t%llu\t%d\n”,nuPTS, nuDTS, nuFrmBytes);
#endif
 }

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 13 of 33 DTS Document No.: 9302J19200E

NOTE: The designation of nFrameStart and nFrameEnd in DTSPBR_Set_Schedule_Region should
account for any codec delay frame(s) in the bit-stream.

3.4.2.2 Example code for retrieving encoded frame data and schedule/payload data for
designated bit-stream region (combined sub-stream method).

// Sets bit-stream region using start and end frame index

 if (! DTSPBR_Set_Schedule_Region(pDtsHDPBRHdl, nFrameStart, nFrameEnd))
 return false;
 // Set library state to start from beginning of selected region

if (! DTSPBR_Init_FrameNavigation(pDtsHDPBRHdl))
 return false;
 n = 0;

while (DTSPBR_Get_Frame_Data_SingleSubStream(pDtsHDPBRHdl, & nuFrmDatas,
nuFrmBytes, nuPTS, nuDTS))

 {
 if (fwrite(nuFrmData.m_pucEncodedRawFrame, sizeof(char),
nuFrmBytes,pFile) != nuFrmBytes)
 {
 fprintf(stderr, “Error writing %s.\n”, sFileName);
 fclose(pFile);
 return false;
 }
#ifdef ENABLE_MPEG_DESCRIPTOR

// retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp2TS && pFileMP2 != NULL)
 {
 CDTSMpeg2DTSHD_audio_stream_descriptor DTSHDdescriptor;
 CDTSMpeg2DTS_audio_stream_descriptor DTSdescriptor;

 if
(DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor(pPBRHdl, &DTSHDdescriptor))
 {
 fprintf(pFileMP2, "Frame #%d\n", n);
 Dump_Mpeg2_DTSHD_audio_stream_descriptor(pFileMP2,
&DTSHDdescriptor);
 }

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 14 of 33 DTS Document No.: 9302J19200E

 if
(DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor(pPBRHdl, &DTSdescriptor))
 {
 fprintf(pFileMP2, "Frame #%d\n", n);
 Dump_Mpeg2_DTS_audio_stream_descriptor(pFileMP2,
&DTSdescriptor);
 }
 }
 // retrieve Mp2TS audio descriptor for current frame
 if (bEnableMp && pFileMP4 != NULL)
 {
 CDTSSampleEntry DTSSampleEntry;
 if (DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData(pPBRHdl,
&DTSSampleEntry))
 {
 fprintf(pFileMP4, "Frame #%d\n", n);
 Dump_Mpeg4_DTSSampleEntry(pFileMP4,
&DTSSampleEntry);
 }
 }
#endif // #ifdef ENABLE_MPEG _DESCRIPTOR

 n++;
 fprintf(stderr, “Updating frame #:%d\r”, n);
 }

NOTE: The designation of nFrameStart and nFrameEnd in DTSPBR_Set_Schedule_Region should
account for any codec delay frame(s) in the bit-stream.

3.5 Generation of PBR database image

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 15 of 33 DTS Document No.: 9302J19200E

For applications processing a single non-PBR smoothed DTS-HD Master Audio bit-stream over multiple
sessions, it may be beneficial to create and store an image of the PBR database to reduce start up time in
subsequent sessions. Recall in order to perform PBR scheduling on a non-PBR smoothed DTS-HD
Master Audio bit-stream, the library must first initialize the PBR database by parsing frame payload data
from the entire bit-stream during the load step (via a call to the DTSPBR_Load_EncFile API function).
The PBR database is persistent in memory until the library handle is de-allocated. Any new subsequent
application sessions with the same master audio bit-stream will require a complete traversal of the entire
bit-stream upon session initialization. Although the bit-stream load process is not a computational
exhaustive step, it is limited by the I/O speed of the disc. As an estimate, a 2.2GB bit-stream may take 2
minutes to load and parse. An alternative to re-traversing the entire master audio bit-stream for each new
session, an application may elect to create, store, and manage a PBR database image. After initially
loading a non-PBR smoothed DTS-HD Master Audio encoded file for an inaugural session, an
application can command the library to create an image of the PBR database and use this database image
doing the load process of subsequent sessions instead of traversing the entire bit-stream during session
start-up. (As an estimate, a 2.2 Gbytes bit-stream yields a PBR database image of 11 Mbytes.)

Prior to requesting an image of the PBR database, the application should first query the library for the
database image size and allocate a buffer for this size.
if (! DTSPBR_Get_PBR_DBase_Size(pDtsHDPBRHdl, nPBRDataSize) ||
nPBRDataSize == 0)
 {
 DTSPBR_Deallocate_Hdl(pDtsHDPBRHdl,);
 return false;
 }
 unsigned char *pucPBRBuffer = new unsigned char[nPBRDataSize];

After creating a buffer of the appropriate size, the application can call the
DTSPBR_Get_PBR_DBase_Data API function to fill into the allocated buffer with the PBR database
image.

 if (! DTSPBR_Get_PBR_DBase_Data(pDtsHDPBRHdl, pucPBRBuffer, nPBRDataSize))
 {
 DTSPBR_Deallocate_Hdl(pDtsHDPBRHdl);
 return false;
 }

The PBR database image is managed by the application and is reloaded using the
DTSPBR_Load_EncFile API function.

3.6 Deallocate Library
Use DTSPBR_Deallocate_Hdl to deallocate the library instance.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 16 of 33 DTS Document No.: 9302J19200E

4 Appendix

4.1 API Headers
The following list details the headers which need to be included in applications integrating the the DTS
PBR and Parser library.

• DTSPbr.h contains the DTS PBR Parser API function prototypes and must be included in the
DTS PBR Parser application.

• DTSVersion.h is optional and is only required for accessing the version of the DTS PBR
scheduling and frame parser library.

The following list details additional headers included in the DTS PBR and Parser library SDK package:

• DTSDecFrameBuffer.h (referenced in DTSPbr.h) details the unsigned char buffer class holding
the encoded frame bit-stream.

• DTSEncDecDefs.h contains some enumerated types.
• DTSMpeg2Descriptor.h (referenced in DTSPbr.h) details the classes for retrieving the Mp2TS

audio descriptors for DTS and DTS-HD.
• DTSMpeg4Descriptor.h (referenced in DTSPbr.h) details the classes for retrieving the Mp4

audio descriptors.

4.2 API Functions
4.2.1 DTSPBR_Allocate_Hdl
Allocates and returns a handle (CDTSPBRHdl) to an instance of the DTS PBR Parser library used to
access methods in the API. When the return value is NULL an instance of encoder was unable to be
created.

CDTSPBRHdl DTSPBR_Allocate_Hdl (void);
Return Values

NULL Failed to create.

4.2.2 DTSPBR_Deallocate_Hdl
De-allocates instance of DTS PBR Parser library.

void DTSPBR_Deallocate_Hdl(CDTSPBRHdl pDTSPbrHdl);

Parameters
pDTSPbrHdl Library Instance handle created from DTSPBR_Allocate_Hdl

Return Values
None

4.2.3 DTSPBR_Init
Initialize the DTS PBR Parser library with name of DTS encoded bit-stream and optional initialization
flags.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 17 of 33 DTS Document No.: 9302J19200E

bool DTSPBR_Init(CDTSPBRHdl pDTSPbrHdl,

const char *pcEncFile,
unsigned long nInitFlags);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pcEncFile Full path file name of DTS encoded file
nInitFlags Library initialization flags for special cases. (Should be defaulted to 0).

Return Values
true Successful Initialization.
false Unable to open file or invalid file designated or invalid handle

enum DTSPBRINIT
{
 DTSPBRINIT_NONE // == 0,
 DTSPBRINIT_APAK_2FRM_CODEC_DELAY // Add 2 frame codec delay for APAK
 DTSPBRINIT_NO_SEAMLESS_SWITCHING , // Disables seamless switching
 DTSPBRINIT_NO_CBR // Disables parsing of CBR files
};

4.2.4 DTSPBR_Load_EncFile
Load the DTS encoded file designated in DTSPBR_Init.

bool DTSPBR_Load_EncFile(CDTSPBRHdl pDTSPbrHdl);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl

Return Values
true Successful loading of DTS encoded file.
false Invalid file designated in DTSPBR_Init

4.2.5 DTSPBR_Load_EncFile using PBR Database image
Load the DTS encoded file designated in DTSPBR_Init using PBR database image.

bool DTSPBR_Load_EncFile(CDTSPBRHdl pDTSPbrHdl,

unsigned char *pcPBRDBaseBuffer,
unsigned int nuPBRDBaseBufferSize);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pcPBRDBaseBuffer PBR Database image for designated DTS encoded file.
nuPBRDBaseBufferSize Total buffer size of PBR Database image

Return Values
true Successful loading of DTS encoded file.
false Invalid file designated in DTSPBR_Init

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 18 of 33 DTS Document No.: 9302J19200E

4.2.6 DTSPBR_Get_Load_Progress
Retrieve the percentage complete for loading DTS encoded file in DTSPBR_Load_EncFile().

bool DTSPBR_Get_Load_Progress(CDTSPBRHdl pDTSPbrHdl,

unsigned int &nPercentDone);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nPercentDone Percentage of DTS encoded file loaded

Return Values
true Successful retrieval of DTS encoded file load percentage.
false Invalid handle

4.2.7 DTSPBR_Init_FrameNavigation
Sets the state of the library for retrieval of frame data by setting to first frame (either first frame of bit-
stream or first frame in designated bit-stream region).

bool DTSPBR_Init_FrameNavigation(CDTSPBRHdl pDTSPbrHdl);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl

Return Values
true Successful initialization of retrieval state
false Invalid handle

4.2.8 DTSPBR_Set_Schedule_Region
Selects bit-stream region or section for library to extract frames.

bool DTSPBR_Set_Schedule_Region(CDTSPBRHdl pDTSPbrHdl, int nFrmStartIndex, int
nFrmEndIndex);
Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nFrmStartIndex Bit-stream frame index to start extracting frames. (Set to -1 or 0 for first frame)
nFrmEndIndex Bit-stream frame index to end extracting frames. (Set to -1 for last frame in file)

Return Values
true Successful setting of selected bit-stream region.
false Invalid handle or invalid region designated.

NOTE: The designation of nFrameStart and nFrameEnd in DTSPBR_Set_Schedule_Region
should account for any codec delay frame(s) in the bit-stream.

4.2.9 DTSPBR_Get_Frame_Schedule_SingleSubStream
Retrieves the frame schedule/payload data and returns value as a single sub-stream (combines core and
extension sub-stream).

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 19 of 33 DTS Document No.: 9302J19200E

bool DTSPBR_Get_Frame_Schedule_SingleSubStream(CDTSPBRHdl pDTSPbrHdl,
unsigned DTS__int64 &nuPTS,
unsigned DTS__int64 &nuDTS,
unsigned int &nuBytes);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nuPTS Presentation time
nuDTS Decode time (always set to 0.)
nuBytes Frame payload in bytes

Return Values
true Successful retrieval of DTS frame schedule.
false Invalid handle or end of bit-stream

4.2.10 DTSPBR_Get_Frame_Data_SingleSubStream
Retrieves the encoded frame data and schedule/payload and returns value as a single sub-stream
(combines core and extension sub-stream).

bool DTSPBR_Get_Frame_Data_SingleSubStream(CDTSPBRHdl pDTSPbrHdl,
 CDTSDecRawFrameBuffer *pFrmData,

unsigned int &nuFrmDataBytes,
unsigned DTS__int64 &nuPTS,
unsigned DTS__int64 &nuDTS);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pFrmData Buffer holding encoded frame data
nuFrmDataBytes Frame payload in bytes.
nuPTS Presentation time
nuDTS Decode time (always set to 0.)

Return Values
true Successful retrieval of DTS frame data.
false Invalid handle or end of bit-stream

4.2.11 DTSPBR_Get_AccessUnit_Schedule_SingleSubStream
Retrieves the frame audio pack schedule/payload data and returns value as a single sub-stream (combines
core and extension sub-stream).

bool DTSPBR_Get_AccessUnit_Schedule_SingleSubStream(CDTSPBRHdl pDTSPbrHdl,

int &nENOBUFlag,
unsigned DTS__int64 &nuPTS,
unsigned DTS__int64 &nuDTS,
unsigned int &nuApakBytes,
unsigned int &nuBufOccup);

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 20 of 33 DTS Document No.: 9302J19200E

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nENOBUFlag ENOBU Flag value
nuPTS Presentation time
nuDTS Decode time (always set to 0.)
nuApakBytes Payload size in bytes for audio pack frame data.
nuBufOccup Buffer occupancy in bytes

Return Values
true Successful retrieval of DTS frame schedule.
false Invalid handle or end of bit-stream

4.2.12 DTSPBR_Get_AccessUnit_Data_SingleSubStream
Retrieves the frame audio pack encoded data and schedule/payload data and returns value as a single sub-
stream (combines core and extension sub-stream).

bool DTSPBR_Get_AccessUnit_Data_SingleSubStream(CDTSPBRHdl pDTSPbrHdl,

int &nENOBUFlag,
unsigned DTS__int64 &nuPTS,
unsigned DTS__int64 &nuDTS,
CDTSDecRawFrameBuffer *pFrmData,
unsigned int &nuApakBytes,
unsigned int &nuBufOccup);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nENOBUFlag ENOBU Flag value
nuPTS Presentation time
nuDTS Decode time (always set to 0.)
pFrmData Buffer holding audio pack data
nuApakBytes Payload size in bytes for audio pack frame data.
nuBufOccup Buffer occupancy in bytes

Return Values
true Successful retrieval of DTS frame data.
false Invalid handle or end of bit-stream

4.2.13 DTSPBR_Get_Frame_Schedule_TwoSubStream
Retrieves the frame schedule/payload data and returns value as a separate core and extension sub-
streams.

bool DTSPBR_Get_Frame_Schedule_TwoSubStream(CDTSPBRHdl pDTSPbrHdl,

unsigned DTS__int64 &nuPTS,
unsigned DTS__int64 &nuDTS,
unsigned int &nuCoreBytes,
unsigned int &nuExtBytes);

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 21 of 33 DTS Document No.: 9302J19200E

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nuPTS Presentation time
nuDTS Decode time (always set to 0.)
nuCoreBytes Frame payload of core sub-stream in bytes
nuExtBytes Frame payload of extension sub-stream in bytes

Return Values
true Successful retrieval of DTS frame data.
false Invalid handle or end of bit-stream

4.2.14 DTSPBR_Get_Frame_Data_TwoSubStream
Retrieves the encoded frame data and schedule/payload and returns value as a separate core and
extension sub-streams.

bool DTSPBR_Get_Frame_Data_TwoSubStream(CDTSPBRHdl pDTSPbrHdl,

CDTSDecRawFrameBuffer *pCoreFrmData,
unsigned int &nuCoreFrmBytes,
CDTSDecRawFrameBuffer *pExtFrmData,
unsigned int &nuExtFrmBytes,
unsigned DTS__int64 &nuPTS,
unsigned DTS__int64 &nuDTS);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pCoreFrmData Buffer holding encoded frame data for core sub-stream
nuCoreFrmBytes Frame payload of core sub-stream in bytes
pExtFrmData Buffer holding encoded frame data for extension sub-stream
nuExtFrmBytes Frame payload of extension sub-stream in bytes
nuPTS Presentation time
nuDTS Decode time (always set to 0.)

Return Values
true Successful retrieval of DTS frame data.
false Invalid handle or end of bit-stream

4.2.15 DTSPBR_Get_Stream_Duration
Retrieve frame duration and total number of frames in the entire bit-stream file.

bool DTSPBR_Get_Stream_Duration(CDTSPBRHdl pDTSPbrHdl,

double &dFrameDuration,
unsigned int &nNumTotalFrames);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
dFrameDuration Frame duration in seconds.
nNumTotalFrames Total number of frames in encoded file.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 22 of 33 DTS Document No.: 9302J19200E

Return Values
true Successful loading of DTS encoded file.
false Invalid file designated in DTSPBR_Init

4.2.16 DTSPBR_Get_NumCodecDelayFrame
Retrieve number of codec delay frames at start of encoded file.

bool DTSPBR_Get_NumCodecDelayFrame (CDTSPBRHdl pDTSPbrHdl,

unsigned int & nNumCodecDelayFrames);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nNumCodecDelayFrames Number of codec delay frames at start of encoded file.

Return Values
true Successful retrieval.
false Invalid file designated in DTSPBR_Init

4.2.17 DTSPBR_Get_Schedule_BitRate
Returns the max PBR and avg PBR for entire selected region of the bit-stream.

bool DTSPBR_Get_Schedule_BitRate(CDTSPBRHdl pDTSPbrHdl,

int &nPBRMaxKBPS,
int &nPBRAvgKBPS);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nPBRMaxKBPS Max PBR in KPBS.
nPBRAvgKBPS Avg PBR in KPBS.

Return Values
true Successful loading of DTS encoded file.
false Invalid file designated in DTSPBR_Init

4.2.18 DTSPBR_Get_PBR_DBase_Size
Queries library for buffer size required to hold PBR database image. A size of 0 indicates no PBR
database is available.

bool DTSPBR_Get_PBR_DBase_Size(CDTSPBRHdl pDTSPbrHdl,

unsigned int &nuPBRDBaseSize);
Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
nuPBRDBaseSize Number of bytes required for PBR database image.

Return Values
true Successful creation of PBR Database image
false No PBR database for current file or unable to create

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 23 of 33 DTS Document No.: 9302J19200E

4.2.19 DTSPBR_Get_PBR_DBase_Data
Create PBR database image.

bool DTSPBR_Get_PBR_DBase_Data(CDTSPBRHdl pDTSPbrHdl,

unsigned char *pcBuffer,
unsigned int nuBufferAllocSize);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pcBuffer Buffer holding PBR database image
nuBufferAllocSize Size of buffer for holding PBR database image

Return Values
true Successful creation of PBR Database image
false No PBR database for current file or unable to create

4.2.20 DTSPBR_Get_PBR_DBase_Loaded_Flag
Check if DTSPBR_Load_EncFile using PBR Database image was successful. If the PBR database image
was corrupted, the DTSPBR_Load_EncFile will default back to loading the entire bit-stream.

bool DTSPBR_Get_PBR_DBase_Loaded_Flag (CDTSPBRHdl pDTSPbrHdl);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl

Return Values
true Successful DTSPBR_Load_EncFile using PBR Database image during
false DTSPBR_Load_EncFile defaulted back to traversing bit-stream.

4.2.21 DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor
Retrieves the Mp2TS DTS-HD audio descriptor associated with the DTSH format identifier. This
function may be called after any DTSPBR_Get_Frame_Data_[SingleSubStream,TwoSubStream] or
DTSPBR_Get_Frame_Schedule_[SingleSubStream,TwoSubStream] function call.

bool DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor (

CDTSPBRHdl pDTSPbrHdl
CDTSMpeg2DTSHD_audio_stream_descriptor *pDescriptor);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pDescriptor Mp2TS DTS-HD audio descriptor

Return Values
true Successful retrieval
false Unsuccessful retrieval.

NOTE: All bit-streams are supported with a DTS-HD audio descriptor.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 24 of 33 DTS Document No.: 9302J19200E

4.2.22 DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor
Retrieves the Mp2TS DTS audio descriptor associated with format_identifiers ‘DTS1’, ‘DTS2’, or
‘DTS3’. Function will return false if bit-stream can only be described using Mp2TS DTS-HD. This
function may be called after any DTSPBR_Get_Frame_Data_[SingleSubStream,TwoSubStream] or
DTSPBR_Get_Frame_Schedule_[SingleSubStream,TwoSubStream] function call.

bool DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor (

CDTSPBRHdl pDTSPbrHdl
CDTSMpeg2DTS_audio_stream_descriptor *pDescriptor);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pDescriptor Mp2TS DTS audio descriptor

Return Values
true Successful retrieval
false Unsuccessful retrieval.

4.2.23 DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData
Retrieves the Mp4 DTS sample entry data audio descriptor. This function may be called after any
DTSPBR_Get_Frame_Data_[SingleSubStream,TwoSubStream] or
DTSPBR_Get_Frame_Schedule_[SingleSubStream,TwoSubStream] function call.

bool DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData (

CDTSPBRHdl pDTSPbrHdl
CDTSSampleEntry *pDescriptor);

Parameters
pDTSPbrHdl Library instance handle created from DTSPBR_Allocate_Hdl
pDescriptor Mp4 DTS sample entry audio descriptor

Return Values
true Successful retrieval
false Unsuccessful retrieval.

4.3 CDTSDecRawFrameBuffer
The CDTSDecRawFrameBuffer class is used for returning the encoded bit-stream frame and is declared
in DTSDecFrameBuffer.h.

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 25 of 33 DTS Document No.: 9302J19200E

class DLLEXPORT CDTSDecFrameBufferBase
{
public:
 int m_nBufferType;
 int m_nFrmSize; // size of current buffer
 int m_nStrmType; // Width of the encoded stream word
 bool m_bAllocFlag; // false if buffer is pointer
 // true if buffer is allocated here
 int m_nAllocSize; // size of allocated buffer
}

class DLLEXPORT CDTSDecRawFrameBuffer : public CDTSDecFrameBufferBase
{
public:
 unsigned char *m_pucEncodedRawFrame; // buffer for encoded using char array
}

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 26 of 33 DTS Document No.: 9302J19200E

4.4 CDTSMpeg2DTS_audio_stream_descriptor
The CDTSMpeg2DTS_audio_stream_descriptor class is used for returning the Mp2TS DTS audio
descriptor for encoded bit-stream frame and is declared in DTSMpeg2Descriptor.h.

class DLLEXPORT CDTSMpeg2DTS_audio_stream_descriptor
{
public:
 unsigned char m_ucsample_rate_code;
 unsigned char m_ucbit_rate_code;
 unsigned char m_ucnblks;
 unsigned short m_usfsize;
 unsigned char m_ucsurround_mode;
 bool m_blfe_flag;
 unsigned char m_ucextended_surround_flag;
 unsigned char m_uccomponent_type;
};

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 27 of 33 DTS Document No.: 9302J19200E

4.5 CDTSMpeg2DTSHD_audio_stream_descriptor
The CDTSMpeg2DTSHD_audio_stream_descriptor class is used for returning the Mp2TS DTS-HD
audio descriptor for encoded bit-stream frame and is declared in DTSMpeg2Descriptor.h.

class CDTSMpeg2Asset
{
public:

unsigned char m_ucasset_construction;
 bool m_bvbr_flag;
 bool m_bpost_encode_br_scaling_flag;
 bool m_bcomponent_type_flag;
 bool m_blanguage_code_flag;
 unsigned short m_usbit_rate_scaled;
 unsigned short m_usbit_rate;
 unsigned char m_uccomponent_type;
 unsigned int m_unISO_639_language_code;
};

class CDTSMpeg2SubStream
{
public:
 unsigned char m_ucNum_Assets;
 unsigned char m_ucChannel_Count;
 bool m_bLFE_Flag;
 unsigned char m_ucSampling_frequency;
 unsigned char m_ucSample_Resolution;
 CDTSMpeg2Asset m_sAsset[8];
};

class DLLEXPORT CDTSMpeg2DTSHD_audio_stream_descriptor
{
public:
 bool m_bsubstream_core_flag;
 bool m_bsubstream_0_flag;
 bool m_bsubstream_1_flag;
 bool m_bsubstream_2_flag;
 bool m_bsubstream_3_flag;
 CDTSMpeg2SubStream m_ssubstream_core;
 CDTSMpeg2SubStream m_ssubstream_0;
 CDTSMpeg2SubStream m_ssubstream_1;
 CDTSMpeg2SubStream m_ssubstream_2;
 CDTSMpeg2SubStream m_ssubstream_3;
};

DTS-HD® PBR API Library Description

Version 1.2

CONFIDENTIAL – NOT For Distribution – Do NOT Copy
24140 v3 Page 28 of 33 DTS Document No.: 9302J19200E

4.6 CDTSSampleEntry
The CDTSSampleEntry class is used for returning the Mp4 DTS audio descriptor for encoded bit-stream
frame and is declared in DTSMpeg4Descriptor.h.

class CDTSSpecificBox
{
public:
 unsigned int m_nSize;
 unsigned char m_ucType[4];
 unsigned int m_nDTSSamplingFrequency;
 unsigned int m_nMaxBitrate;
 unsigned int m_nAvgBitRate;
 unsigned char m_nPCMSampleDepth;
 unsigned char m_nFrameDuration;
 unsigned char m_nStreamConstruction;
 bool m_bCoreLFEPresent;
 unsigned char m_nCoreLayout;
 unsigned short m_nCoreSize;
 bool m_bStereoDownmix;
 unsigned char m_nRepresentationType;
 unsigned short m_nChannelLayout;
 bool m_bMultiAssetFlag;
 bool m_bLBRDurationMod;
};

class CDTSSampleEntry
{
public:
 unsigned int m_nSize;
 unsigned char m_ucType[4];
 unsigned int m_nChannelCount;
 unsigned int m_nSampleSize;
 unsigned int m_nPredefined;
 unsigned int m_nSampleRate;
 CDTSSpecificBox m_dtssbox;
};

	1 INTRODUCTION
	1.1 Overview

	2 Initialization
	2.1 Library Instantiation
	2.2 Library Initialization
	2.3 Loading of bit stream
	2.3.1 Loading of bit-stream using PBR database data

	3 Retrieval of frame schedule/payload and frame data
	3.1 Initializing library start state
	3.2 Frame retrieval for separate core and extension sub-streams.
	3.2.1 Example code for retrieving only schedule/payload data for each frame of the encoded bit-stream (separate core and extension sub-stream method).
	3.2.2 Example code for retrieving both the encoded data and schedule/payload data for each frame of the encoded bit-stream (separate core and extension sub-stream method).

	3.3 Frame retrieval for single sub-stream (combined core and extension)
	3.3.1 Example code for retrieving only schedule/payload data for each frame of the encoded bit-stream (combined sub-stream method)
	3.3.2 Example code for retrieving both the encoded data and schedule/payload data for each frame of the encoded bit-stream (combined sub-stream method).

	3.4 Navigation or designating section of bit-stream to extract
	3.4.1 Designating bit-stream section for retrieving frame data into separate core and extension sub-streams.
	3.4.1.1 Example code for retrieving only schedule/payload data for designated region of the encoded bit-stream (separate core and extension sub-stream method).
	3.4.1.2 Example code for retrieving both the encoded data and schedule/payload data for designated region of the encoded bit-stream (separate core and extension sub-stream method).

	3.4.2 Designating bit-stream section for retrieving frame data into single (combined core and extension) sub-streams.
	3.4.2.1 Example code for retrieving only schedule/payload data for designated bit-stream region (combined sub-stream method).
	3.4.2.2 Example code for retrieving encoded frame data and schedule/payload data for designated bit-stream region (combined sub-stream method).

	3.5 Generation of PBR database image
	3.6 Deallocate Library

	4 Appendix
	4.1 API Headers
	4.2 API Functions
	4.2.1 DTSPBR_Allocate_Hdl
	4.2.2 DTSPBR_Deallocate_Hdl
	4.2.3 DTSPBR_Init
	4.2.4 DTSPBR_Load_EncFile
	4.2.5 DTSPBR_Load_EncFile using PBR Database image
	4.2.6 DTSPBR_Get_Load_Progress
	4.2.7 DTSPBR_Init_FrameNavigation
	4.2.8 DTSPBR_Set_Schedule_Region
	4.2.9 DTSPBR_Get_Frame_Schedule_SingleSubStream
	4.2.10 DTSPBR_Get_Frame_Data_SingleSubStream
	4.2.11 DTSPBR_Get_AccessUnit_Schedule_SingleSubStream
	4.2.12 DTSPBR_Get_AccessUnit_Data_SingleSubStream
	4.2.13 DTSPBR_Get_Frame_Schedule_TwoSubStream
	4.2.14 DTSPBR_Get_Frame_Data_TwoSubStream
	4.2.15 DTSPBR_Get_Stream_Duration
	4.2.16 DTSPBR_Get_NumCodecDelayFrame
	4.2.17 DTSPBR_Get_Schedule_BitRate
	4.2.18 DTSPBR_Get_PBR_DBase_Size
	4.2.19 DTSPBR_Get_PBR_DBase_Data
	4.2.20 DTSPBR_Get_PBR_DBase_Loaded_Flag
	4.2.21 DTSPBR_Get_Frame_Mpeg2_DTSHD_audio_stream_descriptor
	4.2.22 DTSPBR_Get_Frame_Mpeg2_DTS_audio_stream_descriptor
	4.2.23 DTSPBR_Get_Frame_Mpeg4_DTSSampleEntryData

	4.3 CDTSDecRawFrameBuffer
	4.4 CDTSMpeg2DTS_audio_stream_descriptor
	4.5 CDTSMpeg2DTSHD_audio_stream_descriptor
	4.6 CDTSSampleEntry

